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We consider the dynamics of a Brownian particle given by the Langevha equa- 
tion in a strip, under the effects of a deterministic force. The trajectories of par- 
ticles originate at a source whose spatial location in the phase space coincides 
with the location of adsorbing boundaries. This leads to singular behavior of 
trajectories in the high-friction limit. We use the half-range expansion technique 
and systematic asymptotics to solve a boundary value problem for the Fokker- 
Planck operator and to calculate the steady-state transition probability density, 
the mean time to absorption, and the distribution of exit points. We do not 
make assumptions about other parameters in the problem except that they are 
O( 1 ) relative to the friction coefficient. We calculate explicitly the correct loca- 
tion of the Milne-type extrapolation for absorbing boundary conditions for the 
Smoluchowski approximation to the Langevin equation. 

KEY WORDS: Langevin equation; Smoluchowski equation; half-range 
expansion; singular perturbations; Milne extrapolation length. 

1. I N T R O D U C T I O N  

In this paper we derive the leading-order approximat ion to a problem for 
a diffusion process given by the Langevin equat ion in a slab, in the 
presence of absorbing boundary  conditions,  in the asymptotic limit of high 
friction. We treat the problem in which all trajectories of the diffusion 
process originme at a source whose spatial location in the phase space 
coincides with the spatial location of an absorbing boundary.  In  the high- 
friction limit the behavior of the trajectories of the Langevin process in 
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the neighborhood of such boundaries becomes singular. We conduct an 
asymptotically exact analysis, with no ad hoc assumptions about the form 
of the solution. We include the effects of a potential field. We also consider 
the problem in which trajectories of the process originate away from absor- 
bing boundaries. 

It is well known that the Langevin operator approaches the 
Smoluchowski operator in the limit of limit friction. ~-3~ That is, in the 
high-damping regime, the dynamics in the phase space of position and 
velocity can be approximated by dynamics of the position only. This pro- 
jection of the two-dimensional space onto a one-dimensional space is con- 
structed putting no conditions on the boundary behavior of the underlying 
process. Thus the Smoluchowski operator is the free-space limit for the 
Langevin operator in the high-damping regime. 

Both the Smoluchowski and the Langevin equations have been exten- 
sively used to model many physical and chemical phenomena. ~z4) In many 
situations the starting point for modeling has been the Langevin equation; 
in other situations (e.g., particle motion in the liquid phase), the starting 
point for the modeling has been the simpler Smoluchowski equation. In 
this paper, we discuss level-crossing problems for dynamics of a Brownian 
particle in a force field, given by the Langevin equation in the asymptotic 
limit of high friction. For  the class of level-crossing problems, physical 
boundary conditions are easily translated into the phase space of the 
Langevin equation; however, it has been an outstanding classical problem 
to convert them into boundary conditions in the lower-dimensional space 
of the Smoluchowski equation. (5) 

There are many applications in which problems of this form are a 
natural expression of the underlying physics. The problem considered here 
is concerned with transport of particles from a source to a receptor. It is 
a special case of a Boltzmann equation, with a differential scattering 
operator. 16'7) Many kinds of spectroscopy can only provide information 
about part of the state of a particle (x, but not ~, for example). In such 
a situation, the experiment provides information about the solution to 
level-crossing problems (mean time to travel from x = x  0 to x = x ~ ,  for 
example), c4) 

Stochastic models of transport in ionic channels require the solution to 
level-crossing problem. ~9) Consider the situation when a source of ions is 
placed at position x = 0 (see Fig. I ). The velocity distribution of the source 
is given. The source emits ions with positive and negative velocities. Those 
with negative velocities are immediately resorbed, and those with positive 
velocities are followed until they are absorbed either on the left (when they 
return to the level x = 0  where source is located), or on the right (when 
they get to a given level where another absorbing boundary is located). 
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Fig. 1. Absorbing boundary conditions P=0  are prescribed on {x=0- ,  v>0} and {x=d, 
v < 0}, where the flow is in. The source with the velocity density s(v) is placed at x = 0 +. The 
values P takes on {x=0- ,  o<0} and {x=d, v>0}, where the flow is out, are to be deter- 
mined by solving the problem (2.10)-(2.12). 

Since ions can reach the boundary  on the left only with negative velocities, 
the absorbing boundary  condition can only be imposed on the ~ > 0 half- 
line to ensure that no other ions than those originated by the source enter 
the domain. Similarly, ions can reach the boundary  on the right only with 
positive velocities, so absorbing boundary  conditions are imposed on the 
:~ < 0 half-line. The flux of  exiting ions on the left and on the right is deter- 
mined by the intensity of  the source and the dynamics in the strip between 
the boundary  lines. 

In this model, the boundary  at x = 0, ~ > 0 is singular, since it is both 
the source of  particles and an absorber of  particles. Special care will be 
used below to treat this type of  boundary  condition. In the process, the 
correct treatments for simpler nonsingular absorbing boundary  conditions 
will also be developed. 

Naive considerations at x = 0 lead to contradiction. Suppose that one 
wants to approximate the Langevin operator  in the strip by the 
Smoluchowski ,operator on an interval. Then the Smoluchowski operator  
should be equipped with adsorbing boundary  conditions on both ends of  
the interval, together with the source of  trajectories located on the left. 
Thus the boundary  on the left would be at the same time an absorbing 
boundary  and the source for trajectories of  a diffusion process. Thus no 
trajectories would ever enter the interval. It is obvious that such an 
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approximation cannot provide the correct asymptotic behavior of the 
original Langevin problem in the high-friction limit. In this setup with the 
same location of the source and an absorbing barrier it is evident that 
the problem is of singular perturbation type. 

In this paper we study the boundary value problem for the Fokker-  
Planck operator associated with the Langevin equation, with absorbing 
boundary conditions on half-lines, A > 0 on the left and ,~ < 0 on the right. 
We assume that both boundaries are noncharacteristic, that is, the force 
field does not vanish at the boundaries. Two problems will be solved: one 
with the singular boundary boundary conditions described above, and a 
simpler one with regular boundary conditions, where the source and the 
absorbing boundaries are well separated. We derive the steady-state trans- 
ition probability density and employ it to calculate the mean first time 
to absorption and the probability flux at the boundaries. We derive 
the correct absorbing boundary conditions for the Smoluchowski 
approximation. 

Similar problems, where the extemal conditions may only be 
prescribed on part of the boundary, have been addressed previously. The 
classical problem, first posed in ref. 8, deal with the level crossing of the tra- 
jectories of the Ornstein-Uhlenbeck process with no external forcing term. 
This problem has been the subject of many studies ~~ because it is the 
simplest nontrivial formulation of a class of transport phenomena. 
Moreover, modeling of various physical situations leads to formulations 
which can be interpreted in the language of the Ornstein-Uhlenbeck pro- 
cess; see, for example, ref. 12. The Wang-Uhlenbeck problem cs) has been 
solved recently. (~s'2~ Equivalently, it is a problem for a level crossing of 
trajectories of a Brownian particle in a half-space, under no deterministic 
external forcing term. The boundary value problem for the transition prob- 
ability density function is then formulated in terms of the Fokker-Planck 
operator. The analytical difficulty of solving this problem stems from the 
fact that half the set of eigenfuntions for the Fokker-Planck operator does 
not satisfy orthogonality conditions on the part of the boundary where the 
conditions are imposed, although this half set is complete on this of the 
boundary. (22) The earlier attempts on the problem relied on arbitrary 
postulates on the form of the solution at the boundary, for example, the 
form of the current at the boundary, (~6) moment closure assumptions, ~5"~7) 
numerical calculations,(~~ ~3) ad hoc correction factors.t ~ ~) These analyses 
provided some approximation to the Milne extrapolation length. 

The effect of a linear potential on a Brownian particle with absorbing 
boundary conditions on the half-line x = 0, ~ > 0 was studied in ref. 19. The 
problem was considered on the half-space x > 0 with an additional zero 
condition imposed on the solution as x ~ o0. The analysis of the stationary 
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problem for a particle originating at x = 0 was conducted and the probabil- 
ity of return to the origin was calculated. The Milne extrapolation length 
was calculated when the particle originates away from the boundary, in the 
limit of no potential. 

The problem solved in this paper is different from and much more 
general than the problem considered in ref. 19. We do not assume that the 
potential is linear. We only require that the force does not vanish at the 
boundary. Our results include as a special case those of ref. 19. We consider 
the problem on a slab, that is, on a bounded interval for the spatial 
variable x. The solution of ref. 19 roughly corresponds to our boundary 
layer solution, but with a significant difference. In our case the boundary 
layer solution approaches the nonzero outer solution. Moreover, we solve 
two problems for the Milne extrapolation length. First we calculate the 
location of the extrapolated boundaries in the singular case when the loca- 
tion of the absorbing boundaries coincides with the location of the source. 
We also calculate the Milne length in the regular case. In both cases we 
derive the effect of the potential on the extrapolated boundaries. We 
calculate the probability of return to the origin for an arbitrary potential 
and the slab geometry. In particular, we specialize our results to a linear 
potential and if we extend the thickness on the slab to infinity then we 
recover the results of ref. 19. 

In refs. 20 and 21 a technique of expanding the solution in half the set 
of eigenfunctions, so that the conditions given on the half of the boundary 
are satisfied, was developed--the technique of half-range expansion. We 
generalize and use this technique. We solve the boundary value problems 
using a systematic expansion in the limit of high friction, with no need for 
assumptions about the solution. In the case of a linear potential, we derive 
the complete asymptotic expansion, yielding a solution accurate to within 
a transcendentally small eror. Our two principal tools are half-range expan- 
sions and boundary-layer expansions. The completeness results in refs. 
22-24 provide the theoretical basis for the half-range expansions we use at 
the boundaries. 

In Section 2, we formulate the problem. In Section 3, we present the 
main results of this paper: (i) the expression for the steady-state probability 
density, uniformly valid in the domain; (ii) properties of the original pro- 
cess, such as the mean first passage time to the boundary, and the prob- 
ability flux o n t h e  boundary; and (iii) the correct boundary conditions for 
the Smoluchowski approximation, in both the regular and singular cases. 
In Section 4, preliminary technical results are developed, which are applied 
in Sections 5 and 6 to derive the solutions to the problems. (The technique 
developed and applied herein may also be used to solve the full time- 
dependent problem.) 
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2. F O R M U L A T I O N  OF THE PROBLEM 

We consider a diffusion process (x, v - ~) whose trajectories obey the 
Langevin equation 

. , ~ = U  

f) = --l/v -- U'(x) + (2l/) 1/2 fir/, 
(2.1) 

Here l /denotes the damping coefficient, f2 is the noise strength, U(x) is a 
deterministic potential, and ~ is standard Gaussian white noise. 

We consider the process (x, v) on the strip D - [0, d]  x ~;  trajectories 
originate at x = 0  +, with a known velocity distribution s(v). No other 
trajectories enter D. Thus the transition density p(x, v, t [ ~ = 0  +, t/) 
satisfies the problem given by the Fokker-Planck operator L .... 

Op Op o 
~7=Lx.~p- --V~x+~v [(l/v + U'(x))p] + f  fl~--v2 (2.2) 

with the initial condition 

lim p(x, v, t[ ~ = 0  +, t / )= f i ( x - 0  +) f(V-tl)s(tl) (2.3) 
I ~ O  + 

and the absobing boundary conditions 

p(x=O-,v ,  tl~=O+,rl)=O for v > 0  (2.4) 

p(x=d,v,  t l~=O+,tl)=O for v < 0  (2.5) 

The absorbing boundary conditions indicate that trajectories, once they 
reach the boundary of D, are terminated so they do not reenter D. 
Moreover, Eqs. (2.3) and (2.4) show that the density p suffers a discon- 
tinuity at x = 0 and v > 0, since p -  0 for x < 0. This singular behavior of 
the solution requires a special technique to be developed to obtain the 
solution to the problem (2.2). The analysis will be carried out for a general 
s(q); we will specifically give results for the Maxwellian density 

1 e _,2/262 (2.6) 
s(t/) = (2n )mf  

which describes the source in the state of thermal equilibrium. We solve the 
problem (2.2)-(2.5) in the asymptotic limit of l/>> 1. The noise strength fz 
is not assumed to be small compared to other parameters of the problem, 
that is, compared to U(x) and U'(x) on (0, d). We assume that x = 0 and 
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x = d  are noncharacteristic boundaries for the potential U(x), that is, 
U'(0) :~ 0 and U'(d) ~ O. The special case of U(x) - 0  is solved in Section 6. 
The case of characteristic boundaries will be considered separatelyJ '-5~ 

First we introduce a new time scale 

and rewrite Eq. (2.2) as 

We define the function 

~= tiff (2.7) 

10p 
- - -=L. , . . ,p  (2.8) 
p a~ 

] P(x, v l~=O+)= p(x ,v , f [~=O+,t l )d f  dq (2.9) 

The function tiP can be interpreted as the mean time spent by a trajectory 
at the point (x, v) prior to its absorption, given that it started at position 
(.~_,6~ It follows from (2.2)-(2.5) that P satisfies the problem 

= - -~  ~(x -- 0 +) s(v) (2.10) Lx.,P 

P ( x = 0 - , v l ~ = 0 + ) = 0  if v > 0  (2.11) 

P(x=d ,v[~=O+)=O if v < 0  (2.12) 

(See Fig. 1.) Knowing P, we can calculate properties of the process (x, v), 
for example, 

(i) the mean first passage time (the mfpt), Er, given that the trajectory 
started at ~ = 0 +, is given by 

Er=fl;;o  P(x, v I ~. = 0 +  ) dx dv (2.13) 

(ii) the density of exit points is given by 

p(x(r)=O, v('r) ~ (v, v + dv) [ x(O)=O+ )= -flvP(x=O, v [ ~ = O  +) dv 

if v<O (2.14) 

p(x ( r )=d ,  v(r) ~ (v, v + d v ) [ x ( O ) = O  + ) =f lvP(x=d,  v l ~ = O  + ) dv 

if v>O (2.15) 
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(iii) the total probability flux at x = 0 ,  ~ ( 0 l ~ = 0 + ) ,  and the total 
propability flux at x = d ,  7t(d[ ~ = 0 + ) ,  are given by 

0 

~(o1~ = o+)  = -fir vP(x=O, v l ~ = O  +) dv (2.16) 

~(dl  ~ = 0 + ) = f l  f :  v P ( x = d ,  v l ~ = O + ) d v  (2.17) 

In order words, 7'(dl ( = 0  +) equals to the probability that trajectories 
exit D at x = d (with any velocity) given that they originated at ~ = 0 +. For 
future reference, we write the relation between T ( 0 [ ~ = 0  +) and 
~U(d I ~-- 0+), 

~(o I~ = o  +) = �89 [ �89  ~(dl ~ = 0+)] (2.18) 

The expression in the brackets denotes the flux of the trajectories at x -- 0, 
v < 0, which originated at x--0 ,  v > 0. The factor 1/2 to the right of the 
equality sign indicates that half of the trajectories which originated at the 
source do not enter D; they contribute to the probability flux at x = 0, just 
before they are terminated. [Here the factor 1/2 follows from the assump- 
tion that ~ ~  d v = ~ s ( v ) d v = l / 2 ,  that is, half of the trajectories 
originate with negative velocities. If this is not the case, then the factor 1/2 
in the brackets should be replaced by the proportion of the trajectories 
with negative velocities, and the factor 1/2 to the right of the equality sign 
should be replaced by the proportion of the trajectories with positive 
velocities. ] 

We seek the soluton to (2.10) in the form 

P( x ,  v [ 0 + 1 e - v2/2az e - vc.,.)/~'- )=(2n)1/23 Q(x ,  v [ ~ = 0  +) (2.19) 

Next we define 

g(v) = (2z~)t/z 3e,2/2a 2 s(v) (2.20) 

and we rescale the velocity 

~=-v/~ (2.21) 

Also we denote e -  l / f t .  Upon dropping the hat, we obtain the problem 
for Q: 
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U'(x)'~ 
~x,,,Q(x, v) =- Qvv + - v  + e ~ ) Q v -  e6vQx 

= -eZe vlx)/a" s(v) O(x - 0 + ) 

Q ( x = O - , v l ~  = 0 + ) = 0  if v > O  

Q(x=d,  v l ~ = O  + ) = 0  if v < O  

(2.22) 

Below we solve the problem (2.22) in the asymptot ic  limit of  e ,~ 1. 
We write the formulas for the mfpt and the total flux at the boundary  

in terms of the function Q as 

! l f + ~  d E r =  e-~'2/Z e -U~-';v'r- Q(x, v) dx dv (2.23) 
(2re) I/2 . . . .  o 

~(0)  = 6 e -  t, tova-" 1 f + ~o - e  (2~)~/2 j _ ~  ve-"2/2Q(O, v) dv (2.24) 

~(d)_3_e_V,a,/,r_ 1 f+o~ , - e (2re) l/-----~- -o~ ve - ' /2 Q(d, v) dv (2.25) 

3. M A I N  RESULTS 

The main result of the paper  is the leading-order approximat ion  to the 
diffusion process (2.1) with absorbing boundaries  at spatial locations x = 0 
and x = d, and trajectories originating ar x = 0. We find that  in the high- 
friction limit the Langevin process (2.1) becomes the Smoluchowski  process 

dw Xat = -W'(x) + ,,/56 ~ (3.1) 

with trajectories originating at x = 0, and absorbed at points 

1 1 

, 6 

(3.2) 

(3.3) 

Here ( ( 1 / 2 ) =  -1.460435... is the Riemann zeta function, and &0 is defined 
by the series in Eq. (5.36). In particular,  if the velocity source is 
Maxwelllian, then N' 0 is given by Eq. (5.41) and its numerical value is 
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Fig. 2. The outer marginal steady-state density our  P , ~  (x) in the case of a linear potential 
U ( x ) = x a n d ( a ) f l = 5 , 6 = l , ( b ) f l = l O ,  8=2, withd=2, ovv Pr,~ (d)= O(l/fl). 

~0 = 0.52424 .... Thus the transition probability density function (see Fig. 2) 
of the process x(t) satisfies the Fokker-Planck equation 

Op 0 62 OEP (3.4) 
o - 7 = O x [ U ' ( x ) p ] +  Ox 2 

with the initial condition 

lim p(x, ~ I {) = 6(x) (3.5) 
i ~ 0  

and the absorbing boundary conditions 

p(x*, f I ~) = O, p(x*, ~ I ~) = 0 (3.6) 

We find that the solution to the problem (2.10) uniformly valid on (0, d] 
is given by 

fl -v2/z~2 e -  v(.~)/a2 Q(x, v) P(x, v) - (2rt)l/, 2 e (3.7) 

Here 

L Q(x, v) = Q~ , v) + QB,.(x, v) + Q~L(X, v) (3.8) 
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where 

Q~ (3.9) 

QLL'X,V) = ~. A,:e "l; '̀~ V: (~,a ~ ,3.10) 
n =  I 

M Z 1 ea,r,.4).(d_x,/.V,:( ~ ad ) (3.11, Q~L(X, v) = = nX,()-2(ad)) 

In the case of the Maxwellian velocity source the constants in Eqs. 
(3.9)-(3.11 ) are given by 

C = ~ e u(~ ((1/2) + 8o ~deVC~V,~dyc+O(-~) (3.12, 

D=---~eV'~ +O(~22 ) (3.13, 

M=--~eUtd)/a2eUt~ ( (1/2)+~o + O (~3) (3.14) 
Io a e ~C~)l: d~ 

and the definitions of the eigenvalues )-,7, eigenfunctions Ix,,, and the 
function Jff are given in Eqs. (4.6) and (4.39). The coefficients A,s are given 
by Eq. (5.34), and are 0(1/,8). Using (3.7) in Eqs. (2.13) and (2.17), we find 
the mfpt of the trajectories out of the strip D is given by 

Er = (Er) ~ + (Er)LL + (Er)~L (3.15) 

where (Er) ~ denotes the contribution to the mfpt due to the outer solu- 
tion QOm'(x, v) and is given by 

((1/2)-1-8o d I a , ] ( f l )  = eV~~ e-~(:')/a2 .I e v(.~)/,~- dye dx+O (Er)~ c5 jd eVl,~/: d~ ~o -x 
(3.16) 

while (Ez)LL and (Er)RL denote the contributions to the mfpt due to the 
boundary layen terms QL L and R QBL, respectively. This contributions are 
0(1/[3) and O(1/f12), respectively. They are given by Eqs. (5.58) and (5.59). 
We find that the probability flux at d is given by 

_ ,  ..o,.. 
~(d)= fie " a e,~)/a2 d. + 0 (3.17) 
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Equations (3.15) and (3.17), which are obtained from the solution to the 
full two-dimensional problem, give the same expressions for the mfpt and 
the probability flux at the boundaries as the Smoluchowski approximation 
(3.1) considered on the interval (x*, x*). 

4. I M P O R T A N T  TECHNICAL ANALYSES AND RESULTS 

In this section we derive results which will be used later to write the 
uniform solution to Eq. (2.22). In Section 5 we will show that the boundary  
layer analyses of  Eq. (2.22) (about  x = 0 and x = d) lead to boundary  value 
problems which can be written as 

Q v o + ( - v + a )  Q~-vQ~=O 

Q(:~, v > O ) = O  

Q ~ c o n s t  ~ + c o n s t  2 e - a t ~  -.~) as . ~ o o  

(4.1) 

where the constant  a depends on the particular boundary  larger [see 
Eqs. (5.12) and (5.18)]. 

4.1. Operator &o and Its Properties 

Separation of  variables in Eq. (4.1) leads to an eigenvalue problem for 
the operator  Z~', 

~ V =  V" + ( - v  + a) V'= 2vV (4.2) 

Two solutions to Eq. (4.2) which have the desired behavior for Ivl ,> 1 are 
given by (27) 

Vl(v) = e Iv -- a)2/4 U (  / --1- 2 2 - -  ~ . a ,  u - -  a --[- 22) (4.3) 

V2(v) = e tv- ~2/4 U(�89 + 22 - 2a, --v + a - 22) (4.4) 

where U denotes the parabolic cylinder function of  index i 2 + 2 - 2a. The 
two solutions are linearly independent if 

22 - a2 = n for n = 0, 1, 2,... (4.5) 
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Therefore we obtain the set of  eigenvalues and eigenfunctions of  the 
problem (4.2), 

2o(a) =- 20 = 0 ~ Vo(v, a) = 1 (4.6) 

~-o(a) - ~-0 - a ~ ~'o(V, a) = e - .v  

2. +(a) =- 2. + = [ a + (a2 + 4n)l/2]/2 ~--~ V.+(v, a) 

= He.(v - a + 22,, + ) e -a~tv - a) - (x,t)-' 

2,;-(a) - 2,- - [ a  - (a 2 + 4n)1/2]/2 ~ g~(v, a) 

= He,(v - a + 22 2 ) e -~;(~- ~)- (~;)2 

Here Hen denotes the Hermite polynomials. 
We observe that the operator  s is self-adjoint in the inner product  

( V, W )  = (27z) 1/2 -oo e -tv-a)z/2 V(v) W(v) dv (4.7) 

and that the eigenfunctions ~bm, ~,  of  .o~ corresponding to distinct eigen- 
values 2,,, 2,. (~o~,, = 2,,v(k,,,) are or thogonal  in the inner product  

(v~b,,, ~ , )  = 0 if nv~m (4.8) 

The set {V o, Vo, V+, n = 1, 2,...} is an or thogonal  basis of  the square- 
integrable functions in the inner product  (4.7). Thus any such a function f 
can be expanded as 

f ( v ) = I o V o + 7 o ~ ' o +  ~ ( I+V  + + I 2 V , 7 )  (4.9) 
n =  I 

where 

I o -  (of,  Vo) . (vf, ~'o) I f f -  (vf, V ~ )  (4.10) 
(vVo, Vo)' 70 <V o, <vv , 

Using properties of  Hermite polynomials,  we find the normalization 
constants 

(vVo, Vo)=a 

<VPo, Po)-- --a 

( vV~, V~ ) = ( a -  22,~ ) n! (4.11) 
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In particular, if the source density is Maxwellian, then the analysis near the 
location of the source will require the expansion of f ( v ) =  1/v in terms of 
the eigenfunctions. We have 

1 1 1 e_a2/2e_aV+ ~ (2,+a)ne -t'~+)~/2 
v = a - - a  ,,=, ( a - 2 2 + ) n !  V+(v) 

~. (2,7)" e-('~g)2/2 
+ ( a - Z 2 y )  n! V'7(v) (4.12) 

n = l  

If f and h are two square-integrable functions with respect to the inner 
product (4.7), then we have 

(of, Vo)(Vh, Vo) (of, ~'o)(Oh, ~'o) 
<vf, h> = + 

<vVo, v0> <VPo, Po> 

~. (vf, V.+)(vh, V,+, ) V ; ) ( v h ,  V ;  
.=,/" ( vv+, V, + ) + ~ (vf, ) (4.13) + 

,,=, (vv;-, v,7) 

We will need the following identities, which follow directly from the 
properties of Hermite polynomials. ~27~ We define the nonweighted inner 
product 

( V, W)NW = (2n)]/2 - ~  e -~-/2 V(v) W(v) dv = e~2/2( Ve .... , W)  (4.14) 

Then we have for n = 1, 2 .... 

( V,~, 1 )Nw = (2~ - a)" e -t(a"~):-2)'zav2 (4.15) 

( V~, V)N w = ed'/2( V,~-, ve -av) = 0 (4.16) 

( V,~, v2) r,wr = --a(2~ -- a ) " -  l e-tl~,~)2- 2~,~a~/2 (4.17) 

Equations (4.16) and (4.17) imply that 

a (  Vff, 1)NW= 2 ~ (  V,~, v~)sw (4.18) 

4.2. Solut ion to the  Problem (4 .1)  

In this section we adapt the method of ref. 20 to solve the half-range 
boundary value problem (4.1). In ref. 20 a problem analogous to (4.1) with 
a = 0 was solved. Below we present the main steps in the generalization of 
the method of ref. 20 to the case of a r 0. 
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The eigenfunction expansion of (4.1) is given by 

0(02, v )=  Co+ C'o e -a '~  ~ C +ea"+~ V,+(v) + ~ C~e  ~=~ V;(v)  
n = l  n = l  

(4.19) 

In order to satisfy the matching conditions, we must have C, + = 0  for 
n =  1, 2,.... 

Next we take the Laplace transform of (4.19) with respect to 02 to 
obtain 

Co ~ C2 O(s, v )=  C~ e ... .  + - -  V,7(v ) (4.20) 
s s - a  , 1 = 1  S--~n- 

We also take the Laplace transform of the problem (4.1) with respect 
to 02, solve it, and compare the solution with (4.20). We have 

O v , , + ( - v + a )  Q, , - svO=O for v>O (4.21) 

whose solution is 

Q(s, v) = e ( . . . .  /2/4 U(v - a + 2s) F(s) (4.22) 

where U denotes the parabolic cylinder function with index �89 + s 2 -  sa, and 
the function F(s) is determined below. Since for v > 0 ,  Eqs. (4.20) and 
(4.22) represent the same function, the two representations must have the 
same singularities in s. So we have 

E(s) 
F(s) - (4.23) 

s(s -- a) Jl/'(s) 

where 
o o  

"elF(s) = H c, , (s-2 ,7)  (4.24) 
n =  1 

with coefficients c,, chosen so the product (4.24) converges, and it has a 
suitable behavior for s >> I, and Ar(s = 0 ) =  1 (see Section 4.4); and E(s) is 
an entire function of s. In order to determine E(s) we analyze (4.22) for 
s >> 1. We have 

U(v-a + 2s) ~ (2n)1/2 ~1/3 exp[ -  �89 + (s -- la2 ) In •] Ai(gi/3v)[ 1 + O(s -2/3) ] 

(4.25) 

where Ai denotes the Airy function, and 

a 
g = s - - (4.26) 

2 

822 ,79 / I -2 -22  
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Combining Eq. (4.25) with Eq. (4.38) in Eq. (4.22), we obtain that for s-> 1 

E(s) 
~(s, v) ~ st + i/6 (4.27) 

Since ~ must be meromorphic in s, the only entire function which can 
satisfy (4.27) is E(s)-E-const. Next we invert the Laplace transform 
(4.22) to obtain 

Q(Y,,v)=E[ 1 1 -,,v-~)+,=,,~. nJV'(2~-) e~;'~ 1 - a + ~ e  V,i(v, a) (4.28) 

This is the solution to problem (4.1). 

4.3. Expansion of  V + 

In this section we solve the problem 

Q~"O +(-v+a) O(')-vQ~")=O vu ~ v  

Q(")(~=0,  v)= V+(v) if v > 0  (4.29) 

Q ~ const as ~7 ~ 

We write the solution to (4.29) in the form of the expansion 

Q(")(y:, v)= c~o'~ + ~ C~')ea"'~V;(v) (4.30) 
n = l  

We compare the Laplace transform of (4.30) (with respect to the variable 
if) with the solution to the Laplace transform of the original problem 
(4.29), that is, with the solution to the problem 

O ( m ) ( . ~  O)+(_V.k_a)AIm)[s v)__vsO(m)(s,l))+oV+(s,v)=O if v > 0  

(4.31 ) 

As before, the two forms of solutions must have the same singularities in 
s, so we find that 

0(0,)_ V,+(v) e(~-")"/4U(v--a + 2s) E(s) 
I- (4.32) 

s - L ,  + , s ( s  - , ~  ) . ~ r ( s )  

By the same argument as before we find that E(s)= E= const. We deter- 
_ _  + mine the value of E so Eq. (4.32) has no singularity at s -  2 . , .  We have 

E =  --2+ JV'(2 + ) (4.33) 



Half-Range Expansion Analysis for Langevin Dynamics 329 

We invert the Laplace transform (4.32) to find 

where 

Q(.,)(x,v)=fl~o,.)+ ~ (,,,) ~z.~ ft. e V,7(v ) 
n ~  I 

(4.34) 

/~o,-~ = w ( , L ,  +, ) 

I t  / ' l  - -  ~7(~+-L;-) ~ (4.) 

(4.35) 

Since the function (4.34) is the solution to the problem (4.29), in particular 
for v > 0 and .~ = 0 we obtain the expansion of V, +, in { 1, V~-, n = 1, 2,...} 

V+(v,a)=flto,,) + ~, (m) - fl,, V.(v,a) if v>O (4.36) 
n=l  

4.4. The Funct ion W ( s )  

We need to define a function .#'(s) in the form of the product (4.24), 
so it has simple zeros at 2,7(a)= [ a -  (4n + a2)1/2]/2. We observe that the 
function 

/ a2\U2 ( k _  +~)~/2]  

g 
x (  k + a  +a2/4~/2( a2/2)1/4 ) ~;-g2)-g ; \ l + ( k  + (4.37) 

satisfies this condition. Here g is given by (4.26). Moreover, the function 
N(s) for s >> 1 has the asymptotic behavior given by 

~2 ^2 Q2 
(4.38) 

which is the necessary condition to establish (4.27). Thus we define 

so w ( 0 ) =  1. 

N(s) 
~Ar(s) - (4.39) 

N(0)  
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To calculate the asymptotic behavior of the formulas derived in Sec- 
tions 5 and 6 we need the following asymptotic expansion of Jl r for s ,~ 1: 

J v ~ ( s ) = l + s ~ ( ~ ) + s 2 c z ( 1 ) + O ( s  3 o (4.40) 

Here ~(�89 denotes the Riemann zeta function. 

5. PROBLEM ON 10, d) 

5.1. Free-Space Operators 

We seek an approximate solution to the Langevin equation for long 
time ~= O(1), t =  O(fl). We expand the solution to Eq. (2.8) in the form of 
the asymptotic series t2'3) 

1 l 1 2 p ( x , v , ~ ) = p ~  ( x , v , ~ ) + - ~ p  (x,v,~)+.. .  (5.1) 

The leading-order solution is given by 

p0_ 1 
( 2n ) l/z f e -"/2~2 P~ x, ~) (5.2) 

where po satisfies 

OP~ = L~po ==_ ~z 02P~ 0 
0~ " -~-x~ +Ux (U'(x) P~ (5.3) 

On the time scale ~ the position x and the velocity v of the diffusion process 
(x, v) become independent processes, with the velocity following the 
Maxwellian (thermal equilibrium) distribution, while the position x 
satisfies the stochastic Smoluchowski differential equation 

dx U' x / ~  dw - ~ = -  ( ) + x / 2  ~ (5.4) 

5.2. Outer Solution 

Away from the boundaries and the source, at a distance greater than 
O(e), Eq. (2.22) reduces to the outer problem 

s Q~ = 0 (5.5) 

We seek the solution to Eq. (5.5) in the form of the asymptotic series 

Q~ v) = Q~ v) + tQl(x, v) + eZQ2(x, v) + ... (5.6) 
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Upon substituting Eq. (5.6) into Eq. (5.5) we obtain the infinite system of 
equations 

av~ - vQ~ = O 

Qivv_ vQ vi = OvQxi-1 U'(x)o Q"-' ,  i =  1, 2 .... (5.7) 

The system is solved recursively to yield 

Q~ ) 

(5.8) 

where C and D are arbitrary constants. If the potential U(x) is linear, that 
is, if U(x)= Uox, then we sum up the series (5.8) to obtain the exact 
solution to Eq. (5.5) given by 

QOUT(x,  V) = C I e v~ + Dl (5.9) 

5 . 3 .  Local Solut ion about  x = d  

We introduce a local variable y = (d-x) /e  in Eq. (2.22) to obtain the 
problem for the inner function QR given by 

U'(d)~ 
Q~L + - ~  + ~ - - T - )  O~ + ~ Q ~  = o I5.1ol 

QR(y=0,  v < 0 ) = 0  

QR(y,v)--*Q~ as y ~  

According to the analysis of Section4, the eigensolution to Eq. (5.10) is 
given by 

QR(y,v)=M[do+doe~("+Y/6'+~d,Tea;Y/6V,-Z(-v, aa)] (5.11) 
n ~  1 

where 

2,7 =- ; , , ;-(aa), a ' l =  - e  - -  

1 
do= - a  ~ ,  

and the function JV(s) 
determined below. 

U'(d) 
6 

(5.12)  
1 1 

do - aaA:(aa), d~- = ndV.,()l, 7 ) 

is defined by Eq.(4.39); the constant M is 
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5.4. Local Solut ion About  x =  0 

We introduce a local variable z - x / e  in Eq.(2.22) to obtain the 
problem for the inner function QL given by 

Q,,L, + ( U'(O)'~ 
- v +  e - - - - ~  Q~-gvQ~,.~O (5.13) 

with the boundary condition 

QL(z = 0 - ,  v > 0 ) = 0  (5.14) 

and the jump condition 

e s(v) eU(OVa: (5.15) Q L ( z = 0 - ,  v > O ) - Q I - ( z = O  +, v > 0 ) = ~  v 

and the matching condition 

QL(z, v) --* Q~ v) as z -~ oo (5.16) 

According to the analysis of Section 4, the solution to Eq. (5.13) which can 
satisfy Eq. (5.16) is given by 

QI'+ (z, v) = Ao + Ao e-"~ . . . .  /~) + ~, A, 7 e~;,_/~ V2(v ' a o) 
n = l  

for z > 0  

(5.17) 

where 

U'(O) (5.18) 22 --- 22(a~ a~  

and where Ao, -40, and A,7, n = 1, 2 ..... are arbitrary constants. In order to 
satisfy the jump condition (5.15) we consider the problem (5.13) for z < 0 
on an interval of an infinitesimal length. On such an interval the solution 
does not decay or does not grow significantly. Moreover, there are no 
matching conditions imposed on the left for z < 0. Therefore the eigenfunc- 
tion expansion to Eq. (5.13) must include the entire set of eigenfunctions. 
We have 

QL-(z, v) = Bo + Boe-~~ . . . .  /a) + ~ B~ e a;z/~ V2(v, a ~ 
n = l  

+ ~" B + e a"+~/~ V+(v, a ~ (5.19) 
n = l  
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The jump condition (5.15) gives the relation between A's and B's. We 
expand the right-hand side of Eq. (5.15) in the eigenfunctions { Vo, ~'o, Vf ,  
n = 1, 2,...} as 

es(V) evW)/a2=loVo(v)+7o~'o(V)+ ~. I:V,:(v)+ ~ I,+V+(v) (5.20) 
r U n = l  n =  1 

to obtain 

A o - Bo = Io 

3o - ~o = 70 
(5.21) 

A,7 - B,7 = I;- 

- B , ,  + = I .  + 

However, as shown in Section4, the function which satisfies Eq. (5.13) 
together with the boundary conditions (5.14) must have the form 

QL(z,v)=KI~o+~oe-~~ Z o~,:e~;z/~v~(v,a~ 1 (5.22) 
/ ; =  1 

where K is a constant to be determined, and 

U'(0) ;,~ - 2~(a~ a~ =e 
1 1 1 (5.23) 

~ 0  ~ - a n  a o, ~o = aOA/.(aO), n a t , ( 2 "  ) 

The function dr(s) is defined in Eq. (4.39). Next we rewrite Eq. (5.19) in 
the expansion (4.34). We obtain 

QL-(z,  V) = Bo + Bo ea~ z/,~) + ~ B,,+ e~./,~fltom) 
m = l  

+ ~ VT,(v){BZ, e~;-~/a+ ~ B.+e'~z/'~fl~ ")} if v > 0  
n = l  m = l  

(5.24) 

The two expansions (5.24) and (5.22) must agree at z = 0. This comparison 
leads to the relations between the coefficients B's and ='s. We have 

B o = K ~ 0 -  ~. ~,,n+n(m)~'o 
m = l  

Bo = K~o 

B;=KoL,-[- ~ B+,,,flt~ ") (5.25) 
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5.5. Uni form Solution 

All unknown constants at this point of the analysis are to be deter- 
mined from matching conditions. The matching condition in (5.10) gives 

ca 
CJo e v~)/'~2 d.~ + D = M [  do + 

ao Ce v~a)/'~2 = M U ' (  d) --~ (5.26) 

while matching between QL+ and QOUT according to (5.16) gives 

Ao+,'lo = D  

CeV(~ = Ao U'(O) ,~2 (5.27) 

Equations (5.21) and (5.25)-(5.27) determine all constants uniquely. 
We have 

C =  Or 0 o9 l+R(m)~ --~O(Io+~.m=l'mlJO , 

~ ~2 e v<o >/~2/ U'  ( O ) - pro  

o~ I , , f l o  ) /U  (0) K=P'Y--J2eVr176 + c,-) , 

ao32eVtO~/~2/U,(O ) _ pR o 

Ao=Cp 

D = C(p  + ,~2eVt~ 

M =  CJ2eV<d~/'~'/U'(d) do 

71o = C,~2eU~~ 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

AT=I~+Koc; + ~ I+fl<~ ''~ (5.34) 
m=l 

and with K given by Eq. (5.29), all B's are directly calculated from 
Eq. (5.25). The coefficient p in the above equations is defined as 

f d 0 
p = 6Z[eV~a~/a(l + do /do) /U ' (d )  - eV<~ - e t'~~/6- d.~ (5.35) 
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We observe that all constants, and thus the solution to the problem, 
depend on the density of the velocity source through the cofficients 
Io, 10, I~. We defme 

~. + (,,,) 
~o  = I.,flo (5.36) 

m = l  

In particular, ifthe source density is Maxwellian, (2.6), then in the limit of 
e ~ 1 we have 

e Ur176 ((1/2) + ~o 
C = e - -  -~- O ( e  2) 

6 Io aevt~v:d2 

D =  --e - - - - ~  et1(~ [ ( ( 1 ) + . ~ o ]  +O(e z) 

(5.37) 

(5.38) 

U(O)/~2 K=-~e + O(e 2) (5.39) 

M= e2eV(a)/,:.eU(O)/,~,. ((1/2) +~o  
- -  + O(e 3) (5.40) 

~ a o e u~'~>l'~2 d.fc 

and so on. Here (denotes the Riemann zeta function [((1/2)= -1.46035...] 
and 

g$o ==- ~ n"/2e-"n'A:(x/~) 

,, = ] 2 ~ n! 
(5.41) 

The function X in Eq. (5.41) is calculated by substituting a = 0  into 
Eq. (4.39). We evaluate the series (5.41) numerically to find 

:~o=0.52424... (5.42) 

Thus the uniform solution to the problem (2.22) is given by 

Q(x, v) = Q~ v) + M ~ ds e a;('~>(a-x)/*6 V ; ( - v ,  a a) 
n ~  1 

+ ~ A;ea;('~ ~ (5.43) 
n = l  
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In particular, in the case of a linear potential we write the uniform solution 
a s  

Q(x, v ) =  c 1 e v~ . . . .  /6 )+  Dj  + K a ~ ,  
n = l l  

s s  e ~ ; c -  ~)(a-.,-)/6, V~-( - v, - a )  

+ ~ As176 a) (5.44) 
r t=]  

Here a = e U o / 6  and 

a e .A r 
K =2 I--a) 

~V'( a )  e - " 2 / 2  _ 1 - a Z,,~= , I ~  fl(o ' ' )  

JI/" ( a ) e -  voa/a'- _ .A<- ( - -  a ) 

To leading order the constant K a is given by 

(5.45) 

K a  = e2 Uo~'(1/2) + ,~o -I- O(e 3) 
c52e - Uod/6"- _ 1 

(5.46) 

The other constants are given by 

1 ee'~ - - -~ e - t,oa/62 ~'(1/2) + ,~o 
C1 = a A r (  - a )  - e -  uoa/62 _ 1 

+ O(e 2) (5.47) 

D )  = 1 K a  = e__ ( ( 1 / 2 )  + ~o + O(e2) (5.48) 
a fi e -  uoa/,~'- _ 1 

The coefficients A~- are given by Eq. (5.34) with K replaced by K a. They 
are O(e). We observe that Eq. (5.44) gives the solution to the problem 
(2.22) with a transcendentally small error. 

The marginal density of the position x at x = d does not vanish, but 
rather takes on a value O(e) (cf. Fig. 2). We have 

e m a r ( d )  = ! e - U(d)/62< Q ( d ,  v),  1 > NW = e 
g 

[((1/2) + :~o] ((1/2) eUtOV6, + O(e2 ) 
g e V(x v6"- d x  

(5.49) 

We calculate the flux at x = d  according to the formula (2.25). We have 

~ g ( d ) = ~ - e - t ' ( a ) / a 2 ( Q ( d ,  v) ,  V)NW= - - e 6  ~(1/2)+~'~ et~(~ O(e 2) (5.50) 
Ig e u~xl/~-, dx 
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Equivalently, the probability that a trajectory exits the strip at x = 0 is 
given by 

~(0) = 1 + eJ ((1/2)+-~o eU(O)/~2+ O(eZ) (5.51) 
~ a o e vtx)/az dx 

As the width of the strip d goes to infinity, the trajectory returns to the 
origin with probability one if and only if ~ e U(x)/a' dx = ~ .  Otherwise the 
trajectory returns to the origin with probability given by 

7/(0) = 1 + eJ ((1/2) + "~o eY(O)/62 + O(e2) (5.52) 
J~ e U(x)/62 dx 

In the case of a linear potential the result (5.52) can be deduced from the 
analysis in ref. 19. 

For the clarity of the presentation we calculate the mfpt in the case of 
the linear potential. Analogous results hold in the case of an arbitrary 
potential. By employing the formula (5.44) in Eq. (2.23), we find 

Er = (E'c) ~  + (E't') LL + (e-c) RL (5.53) 

Here (Er) ~ denotes the contribution to the mfpt due to the outer solu- 
tion Q~ v). It is given by 

j2 - e0a/62)] 
(Er) our  = le [ C led ~o/2,~'- d + D l ~ ( 1 -- e 

J [~(1/2) +-~0]( -d+Jao  eu~ dx) 
..~ - - -  + O(e) (5.54) 

Uo ~g e uox/~'- dx 

The contributions to the mfpt due to the boundary layer terms on the left 
and on the right are denoted by (Er)~L and (Er)~L, respectively. We have 

1 a ( ~  ) 
(Er)RL=--Ka~ e -U~ d , ( V 2 ( v ) ,  I>NW e't;~-')~a-'~ dx(5.55) 

8 "JO n 1 

which is given, with a transcendentally small error, by 

( Vs l>Nw ( Er ) ~L = de VOa/'~2 Ka d~ ,,=~/' L*, (a) 

= ~_ eUod/c~2 g d  
a 

= - - j K a ( I  ~ + O(e))  

= e2 U0~ (1/2) -- ~o/z + O(e 3) (5.56) 
e U~ I 
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where 

n"/2 e -"/2 Jl" ( x//~ ) 
p - ~ 0.206198... 

,, = ~ 2 n  - n !  
(5.57) 

[Here jV is evaluated according to Eq. (4.39) with a = 0.] In the case of an 
arbitrary potential, (Er)RL is given by 

(Er)RL = e2~eVl0~/a2 ((I/2) + ~o 
~o a e Vl'~/6' ds p 

For a linear potential, similar calculations give 

(5.58) 

(Er )kL=6  ~. AT, (V'7'  1)Nw 
,=1 2,+(a ) -- O(e) (5.59) 

In the case of an arbitrary potential the boundary layer solution at the left 
gives the same contributions as given in Eq. (5.59), multiplied by e U(~ 
and with a replaced by eU'(O)/& The contribution due to the outer 
solution in general is given by 

(Er)OU- r = le IO I e - v(.,.)/a2( Qou-r(x ' v), 1 ) NW dx (5.60) 

which is O(1 ). 

5.6. Extrapolation Length 

In this section we derive the reduced boundary value problem corre- 
sponding to (2.10) in the asymptotic limit f l>  1. As shown in Section 5.1, 
the Fokker-Planck operator L ...... for the diffusion process (2.1) approaches 
the forward operator L,. for the Smoluchowski problem in the limit as 
fl ~ ~ .  Thus Eq. (2.10) becomes 

, O'-P 8 
L,:e= 6--~x2 +-~x ( U'(x) P ) = - 6 ( x - O  +) (5.61) 

Next we derive the boundary conditions for Eq. (5.61) consistent with the 
absorbing boundary conditions (2.11) and (2.12). In particular, Eq. (5.61) 
equipped with these new boundary conditions must give the same values of 
the mean passage time and the probability flux at the boundary, among 
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others, as those obtained from the full two-dimensional problem in Eqs. 
(2.13), (2.16), (2.17). The outer solution to Eq. (2.10) according to (2.9) 
and (2.21) is given by 

P~ V)= 1 e-"/2e-Vf"Va2Q~ v) 
(2,t) '/2 (5.62) 

where QOUT is given by Eq. (5.8). Hence the marginal density PmarOUT('x)" IS 
given by 

OUT f '~' P m a r  ( x )  ----- pOUT(x, V) dv 
- o o  

., x , /~2 
= e-UC~)/6" [ C (f  ~ eUC~)la- dy, +-f U'(x) eVC")/aZ) + D] -~- O(g 3) 

(5.63) 

To leading order the constants C and D are given by Eqs. (5.37) and 
(5.38), respectively, our  . Pmar (X) vanishes at a point x* which is the solution 
to 

e2 e u~x~/a'] + D ~ 0 (5.64) C[ f:" eU'.~'/": d~ +-~ U'(x *) 

It is given by 

x*~,d+u--~--~ln ../V -e----~--,}-~-~z U'2(d) (5.65) 

Expanding o4," for e ,~ 1, as in Eq. (4.40), we find that 

x* = a-e6~(  �89 �89 + o(e ~) (5.66) 

We observe that in the case of a linear potential the formula (5.65) is exact, 
that is, the sign ~ should be replaced with the equality sign. Since the 
(outer) marginal density vanishes at x l ,  It is the point of extrapolated 
absorbing conditions for the operator (5.61). 

In order to-determine the point of the extrapolated boundaries on the 
left (near the location of the source), we proceed as follows. We extend the 
problem (5.61) to the left of the location of the source, that is, for x < 0 .  
We require that for x < 0 the density P satisfies the problem 

L~P=O (5.67) 
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and it is continuous at x, that is, 

P(0) OUT = emar  (0)  (5 .68)  

and Eq. (5.61) determines the jump in the derivative as 

ddx P ~  P(0)= - ~  (5.69) 

We solve the problem (5.67)-(5.69) to obtain 

)fx ] P ( x ) = e  -u~x)/~2 + C eU"J/a" dt + D for x < 0  (5.70) 
"~0 

Next we calculate the point x* where P vanishes. Its coordinate is given by 

t~2 [ D U'(O) -vto>/a2] 
X * ~ u - - ~ l n  1 C + I / O  d 2 e (5.71) 

Using Eqs. (5.37) and (5.38), we find that 

XI~ = et~(~'(1) "~ "~0) "{- O(~:2) (5.72) 

the problem for the where ~0 is given by Eq.(5.41). Therefore 
Smoluchowski equation (5.61) equipped with zero boundary conditions at 
points x* and x*, given by (5.66) and (5.72), respectively, is the leading- 
order approximation to the problem (2.10) in the asymptotic limit of large 
friction. 

6. EXAMPLE: NO-FORCE CASE 

In this section we show how our analysis reduces to the case of no 
external force, that is, if U(x)  = 0 on [0, d]. For the clarity of the presenta- 
tion we assume that the velocity source at x = 0 is Maxwellian, (2.6). Thus 
we solve the problem 

-~x,~ - Q~,, - vQv - e f vQx  = - e Z  f (  x - o + ) 

Q ( x = O - , v > O l  ~ = o  + ) = 0  

Q ( x = d ,  v<OI ~x=O+)=O 

(6.1) 
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In the analysis below we use the properties of the operator s derived in 
ref. 20. The uniform solution to the problem (6.1) is 

Q(x, v) = C(x - eSv) + D + ~ A 2 V~(v) e -'m-xm 

- -K  d ~ flnV,7(1))e -nl~(d-x)/ga i f  O<x<~d 
n = l  

(6.2) 

where 

8 
c =  [ = - & ]  

5( d + 2e5o0 

e(d + eaa) 
D [oc--.~o] 

6( d + 2e3~) 

F, 2 
K a_ _ _  [cx--,r d + 2e&x 

8 
K ~ [ d +  e&c + e&~ 

fi( d + 2eSoc ) 

A,7 =~1 (-1)"+'fl,, (1 e50x- =~ ~_7_ 2--~--d ) + ~ Ik + fl,,<k' + i7,1 
k= l  

with 

and 

(6.3) 

flt _N(v/~)  
2n! ~/n' 

= ( - l ) k  x/r N(x/ )N(x/rk) (6.4) 

(,//+,/7) 

f i  ( 1 +  s__f__'~(kx/~j\ +k l'~&: e-2"C"a-~ ' " P - l )  (6.5) N(s )=  
n ~  1 

8 r/n/2 e - n / 2  
, = ) I , ,  ( 6 . 6 )  I, += 6 2n! x/- n 17' --(--1 " + 

Next we calrulate properties of the process (x, v). The probability that 
a trajectory leaves D at x = d, given it started at x = 0 + according to 
formula (2.25), is given by 

gS(d) = fi_ f +~ 1 e3 e _~, (2101/2 ve-V2/2Q(d' v) dv =fi-Kde d - - +  2e6~ (co- ~~ (6.7) 
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Similarly, the probability that a trajectory that originates at x = 0 + leaves 
D at x = 0 (with v < 0) is given by 

Of +~ 1 _~/2Q(O_,v) dv=6_KO d + e6(cx + ,..~o) 
gt(0) = - e J - o o  (2n) I/~ve e - d+ 2e6o~ 

(6.8) 

Moreover, the probability ~u+(0) that a trajectory which originates at 
x = 0 with v > 0 leaves D at x = 0 with v < 0 is given by 

1 1 d + 2e6~o 
~ + ( 0 ) -  7t(0) 2 = 2  ~U(d) 2(d+2e60Q (6.9) 

The mfpt to the boundaries of D, according to Eq. (2.33), is given by, with 
a transcendentally small error, 

c +ed+ 6 Z A;-(V;-.I>-,6K" Z (6.10/ 
n ~ (  n = l  

Here ( V, +, 1) -n"/Ze -"/= and ( V~-, 1) - ( - 1 ) " (  V, +, 1). To leading 
order Eq. (6.10) becomes 

Er = d(e - ~o) + O(e) (6.11 ) 
26 

The leading-order outer approximation to the problem (2.10) with 
U ( x ) -  0 is given by 

1 1 
o7 Px.,- = - -  6(x) 

P(x*) =0 ,  P(x*) = 0  (6.12) 

where X*(g~ denote the coodinates of the extrapolated boundary conditions, 
which are found by the mthod of Section 4.4 to be 

x* = -e6(ct - ~o), x* = d + e6ct (6.13) 

The outer problem (6.12) gives formulas for the mfpt and the probability 
of exit points the same as those given by Eqs. (6.11) and (6.7)-(6.9). 

7. D ISCUSSION 

In this paper we have presented a systemtic asymptotic analysis of a 
boundary value problem for the Fokker-Planck operator corresponding to 
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the Langevin equation in the high-friction limit. We assumed that the 
trajectories of the process originate with an arbitrary velocity density. 
Absorbing boundary conditions were prescribed at the spatial location 
x = 0 of the velocity source and at another location, x = d>~ O(1) away. 
The global effects of a potential function on the probability flux at the 
boundaries and the mean time to absorption were included. The friction 
parameter fl was assumed to be large compared to other parameters of 
the problem: the temperature (noise strength) 62 , and the force at the 
boundaries, U'(0) and U'(d). More specifically, the outer expansion (in the 
case of an arbitrary potential) and the boundary layer analysis are valid as 
long as fl ,> 6. For clarity of presentation we showed results in Section 3 in 
the high-damping regime with the other parameters being O(1). However, 
our analysis yields more general results. It shows the interplay between 
parameters of the problem: fl, 6, and the strength of the force at the bound- 
aries, U'(d) and U'(O). The extrapolation length depends on the factor 
ad-~ U'(d)/fl6 through the function ~/ ' ( -aa)---compare Eq. (5.65). Results 
shown in Section 3 were obtained by expanding the function ~4 r for small 
values of its argument. That is, if force is O(1) at the boundary, then this 
expansion is valid for fl,> 1/6. However, the examples of Section 3 are 
derived from the more general results obtained in Section 5 under the 
assumption that fl ~ 6. 

The half-range expansion calculations presented here are based on a 
modification of the method of refs. 20 and 21 to include effects of the force 
on the boundary layer solution. An alternative method for treatment of 
half-range expansion boundary value problems in the case of a constant 
force and a half-space domain x > 0 was developed in refs. 18 and 19. Our 
boundary layer solution at x = d corresponds to the analysis of the Milne 
problem of refs. 18 and 19, while our boundary layer solution at x = 0  
correspond to the albedo problem of refs. 18 and 19. In particular, our 
asymptotic limit of high damping [with other parameters being O(1)] in 
the boundary layer solution corresponds to the small-force field limit of 
ref. 14. [In ref. 14 the distinguished limit of the damping coefficient and the 
noise strength fl62= O(1) was considered.] In this asymptotic limit both 
methods yield identical results for the behavior of the boundary layer 
solutions. 

To summarize the contributions of this paper: we have extended the 
analysis of refs. 1.4, 18, and 19 to include the effects of both a finite slab 
geometry and a general potential. [The restriction d~> O(1) may be 
removed by applying the expansion method of Section 5.1 to both bound- 
aries simultaneously. ] These generalizations enable the calculation of the 
mean time to absorption, which is O(1). Thus the effect of the boundary 
layer next to the source is singular. [ If the trajectories originate away from 

822/79/1-2-23 
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the boundaries, then in the Smoluchowski limit the mean time to absorp- 
tion is O(fl).] We have calculated the probabilities of absorption at each 
of the boundaries and the velocity distributions of these exit points. If the 
width of the slab becomes infinite, we have calculated the probability of 
recurrence for an arbitrary potential, whic agrees with the results of ref. 19 
in the case of a linear potential. 

A more detailed discussion of the extrapolation length as a function 
of the parameters of the problem will be given elsewhere/25) We will 
generalize the analysis to include the effects of the noncharacteritic bound- 
aries. We will also generalize the method of refs. 20 and 21 to handle 
half-range expansion problems for other types of differential scattering 
operators. 
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